Applied Sciences (Jan 2025)

Strength Prediction Model for Cohesive Soil–Rock Mixture with Rock Content

  • Yang Sun,
  • Jianyong Xin,
  • Junchao He,
  • Junping Yu,
  • Haibin Ding,
  • Yifan Hu

DOI
https://doi.org/10.3390/app15020843
Journal volume & issue
Vol. 15, no. 2
p. 843

Abstract

Read online

Fault fracture zones, characterized by high weathering, low strength, and a high degree of fragmentation, are common adverse geological phenomena encountered in tunneling projects. This paper performed a series of large-scale triaxial compression tests on the cohesive soil–rock mixture (SRM) samples with dimensions of 500 mm × 1000 mm to investigate the influence of rock content PBV (20, 40, and 60% by volume), rock orientation angle α, and confining pressure on their macro-mechanical properties. Furthermore, a triaxial numerical model, which takes into account PBV and α, was constructed by means of PFC3D to investigate the evolution of the mechanical properties of the cohesive SRM. The results indicated that (1) the influence of the α is significant at high confining pressures. For the sample with an α of 0°, shear failure was inhibited, and the rock blocks tended to break more easily, while the samples with an α of 30° and 60° exhibited fewer fragmentations. (2) PBV significantly affected the shear behaviors of the cohesive SRM. The peak deviatoric stress of the sample with an α of 0° was minimized at lower PBV (BV (>60%). Based on these findings, an equation correlating shear strength and PBV was proposed under consistent α and matrix strength conditions. This equation effectively predicts the shear strength of the cohesive SRM with different PBV values.

Keywords