Проблемы анализа (May 2015)
ON REGULARITY THEOREMS FOR LINEARLY INVARIANT FAMILIES OF HARMONIC FUNCTIONS
Abstract
The classical theorem of growth regularity in the class S of analytic and univalent in the unit disc ∆ functions ƒ describes the growth character of different functionals of ƒ Є S and z Є ∆ as z tends to δ∆. Earlier the authors proved the theorems of growth and decrease regularity for harmonic and sense-preserving in ∆ functions which generalized the classical result for the class S. In the presented paper we establish new properties of harmonic sense-preserving functions, connected with the regularity theorems. The effects both common for analytic and harmonic case and specific for harmonic functions are displayed.
Keywords