Geophysical Research Letters (Nov 2023)
Quantifying the Contribution of Salinity Effect to the Seasonal Variability of the Makassar Strait Throughflow
Abstract
Abstract The Makassar Strait throughflow (MST) constitutes a significant component of the Indonesian throughflow (ITF) and plays a pivotal role in the interbasin exchange between the Indian and Pacific Oceans. While previous studies have suggested that the buoyancy forcing plays a role in influencing the seasonality of the MST, the quantitative contribution of salinity effect on MST seasonality remains unclear. Here we use the measurements from the Monitoring ITF program and the Global Ocean Physics Reanalysis product to investigate the seasonality of MST and quantify the impact of the salinity effect. We find that the halosteric variability due to the salinity effect contributes to approximately (69.6 ± 11.7) % of the total seasonal variability of surface dynamic height gradient along the Makassar Strait, and dominates the seasonality of the upper layer MST. The primary drivers for freshwater forcing are horizontal advection through the Karimata Strait and precipitation in the Java Sea.