Plants (Apr 2023)

Comparative Transcriptome Analysis Reveals the Effect of miR156a Overexpression on Mineral Nutrient Homeostasis in <i>Nicotiana tabacum</i>

  • Wanhong Liu,
  • Xue Ji,
  • Hanping Cao,
  • Chunsong Huo,
  • Linshen He,
  • Xiang Peng,
  • Ya Yang,
  • Fang Yang,
  • Shu Xiong

DOI
https://doi.org/10.3390/plants12091739
Journal volume & issue
Vol. 12, no. 9
p. 1739

Abstract

Read online

Mineral nutrition plays an important role in crop growth, yield and quality. MiR156 is a regulatory hub for growth and development. To date, the understanding of miR156-mediated mineral homeostasis is limited. In this study, we overexpressed Nta-miR156a in the tobacco cultivar TN90 and analyzed the effects of miR156 on mineral element homeostasis in tobacco by comparative transcriptome analysis. The results showed that the overexpression of miR156a caused significant morphological changes in transgenic tobacco. Chlorophyll and three anti-resistance markers, proline, total phenolics, and total flavonoids, were altered due to increased miR156 expression levels. Interestingly, the distribution of Cu, Mn, Zn, and Fe in different tissues of transgenic tobacco was disordered compared with that of the wild type. Comparative transcriptome analysis showed that the overexpression of miR156 resulted in 2656 significantly differentially expressed genes. The expression levels of several metal-transport-related genes, such as NtABC, NtZIP, NtHMA, and NtCAX, were significantly increased or decreased in transgenic tobacco. These results suggest that miR156 plays an essential role in regulating mineral homeostasis. Our study provides a new perspective for the further study of mineral nutrient homeostasis in plants.

Keywords