Bioengineering (Aug 2023)
Clinical Interpretability of Deep Learning for Predicting Microvascular Invasion in Hepatocellular Carcinoma by Using Attention Mechanism
Abstract
Preoperative prediction of microvascular invasion (MVI) is essential for management decision in hepatocellular carcinoma (HCC). Deep learning-based prediction models of MVI are numerous but lack clinical interpretation due to their “black-box” nature. Consequently, we aimed to use an attention-guided feature fusion network, including intra- and inter-attention modules, to solve this problem. This retrospective study recruited 210 HCC patients who underwent gadoxetate-enhanced MRI examination before surgery. The MRIs on pre-contrast, arterial, portal, and hepatobiliary phases (hepatobiliary phase: HBP) were used to develop single-phase and multi-phase models. Attention weights provided by attention modules were used to obtain visual explanations of predictive decisions. The four-phase fusion model achieved the highest area under the curve (AUC) of 0.92 (95% CI: 0.84–1.00), and the other models proposed AUCs of 0.75–0.91. Attention heatmaps of collaborative-attention layers revealed that tumor margins in all phases and peritumoral areas in the arterial phase and HBP were salient regions for MVI prediction. Heatmaps of weights in fully connected layers showed that the HBP contributed the most to MVI prediction. Our study firstly implemented self-attention and collaborative-attention to reveal the relationship between deep features and MVI, improving the clinical interpretation of prediction models. The clinical interpretability offers radiologists and clinicians more confidence to apply deep learning models in clinical practice, helping HCC patients formulate personalized therapies.
Keywords