Current Plant Biology (Sep 2024)

Emerging research trends in plant-plastic interactions: A thorough analysis

  • Bing Yang,
  • Wanju Feng,
  • Qi Lin

Journal volume & issue
Vol. 39
p. 100375

Abstract

Read online

Plants are integral components of ecosystems and key sources of food, medicine, and other resources for human societies. The interactions between micro(nano)plastics and plants have garnered significant attention in recent years due to the pervasive nature of plastic pollution and its potential impact on terrestrial and aquatic ecosystems. This study aims to analyze the current understanding, critical knowledge gaps and future perspectives on the interactions between plants and plastic residues, including microplastics, nanoplastics, microfiber, and microbeads. Data was gathered from the Web of Science Core Collection database, with 1049 documents indexed from 2009 to 2023 for further analysis. Co-citation analysis combined with co-word network analysis was utilized. The findings indicate a notable increase in publication productivity on plastic-plant interactions over the past decade, with China, India, Italy, Korea, and Spain as the core research countries in the field. Chinese universities and research institutions, particularly Naikai University and the Chinese Academy of Sciences, are the major research drivers. Weitao Liu from Naikai University was the most productive author up to 2023. Science of the Total Environment, Environmental Pollution, and Journal of Hazardous Materials were the top three journal that published the most articles. The most frequently cited article titled “Microplastics can change soil properties and affect plant performance” published in Environmental Science & Technology in 2019. The co-citation network highlights the interconnectedness of plant-plastic interactions, while burst analysis and thematic mapping suggest that future research will focus on the impact of emerging contaminants like microplastics and nanoplastics on soil health in the plastisphere. More long-scale and long-term interdisciplinary studies including plant species and polymer types at field condition are needed to a better understanding the plant-plastic interactions. This study offers a thorough and unbiased real-time analysis of plant-plastic interactions, highlighting current trends and outlining future research directions and priorities.

Keywords