Frontiers in Oncology (Jun 2020)

Porf-2 Inhibits Tumor Cell Migration Through the MMP-2/9 Signaling Pathway in Neuroblastoma and Glioma

  • Xue-Yuan Li,
  • Guo-Hui Huang,
  • Guo-Hui Huang,
  • Guo-Hui Huang,
  • Qian-Kun Liu,
  • Xi-Tao Yang,
  • Kang Wang,
  • Wen-Zheng Luo,
  • Tian-Song Liang,
  • Shan-Peng Yuan,
  • Ying-Wei Zhen,
  • Dong-Ming Yan

DOI
https://doi.org/10.3389/fonc.2020.00975
Journal volume & issue
Vol. 10

Abstract

Read online

Tumor migration and invasion are key pathological processes that contribute to cell metastasis as well as treatment failure in patients with malignant tumors. However, the mechanisms governing tumor cell migration remain poorly understood. By analyzing the tumor-related database and tumor cell lines, we found that preoptic regulatory factor-2 (Porf-2) is downexpressed in both neuroblastoma and glioma. Using in vitro assays, our data demonstrated that the expression of Porf-2 inhibits tumor cell migration both in neuroblastoma and glioma cell lines. Domain-mutated Porf-2 plasmids were then constructed, and it was found that the GAP domain, which plays a role in the inactivation of Rac1, is the functional domain for inhibiting tumor cell migration. Furthermore, by screening potential downstream effectors, we found that Porf-2 can reduce MMP-2 and MMP-9 expression. Overexpression of MMP-2 blocked the inhibitory effect of Porf-2 in tumor cell migration both in vitro and in vivo. Taken together, we show for the first time that Porf-2 is capable of suppressing tumor cell migration via its GAP domain and the downregulation of MMP-2/9, suggesting that targeting Porf-2 could be a promising therapeutic strategy for nervous system tumors.

Keywords