Microsystems & Nanoengineering (Sep 2024)

Zero-power infrared switch with two-phase microfluidic flow and a 2D material thermal isolation layer

  • Zekun Zhang,
  • Peng Li,
  • Yixuan Zou

DOI
https://doi.org/10.1038/s41378-024-00761-x
Journal volume & issue
Vol. 10, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Wireless sensor nodes (WSNs) play an important role in many fields, including environmental monitoring. However, unattended WSNs face challenges in consuming power continuously even in the absence of useful information, which makes energy supply the bottleneck of WSNs. Here, we realized zero-power infrared switches, which consist of a metasurface and two-phase microfluidic flow. The metasurface can recognize the infrared signal from the target and convert it into heat, which triggers the two-phase microfluidic flow switch. As the target is not present, the switch is turned off. The graphene/MoS2/graphene 2D material heterostructure (thickness <2 nm) demonstrates an exceptionally high thermal resistance of 4.2 K/W due to strong phonon scattering and reduces the heat flow from the metasurface to the supporting substrate, significantly increasing the device sensitivity (the displacement of the two-phase microfluidic flow increases from ~1500 to ~3000 µm). The infrared switch with a pair of symmetric two-phase microfluidic flows can avoid spurious triggering resulting from environmental temperature changes. We realized WSNs with near-zero standby power consumption by integrating the infrared switch, sensors, and wireless communication module. When the target infrared signal appears, the WSNs are woken and show superb visual/auditory sensing performance. This work provides a novel approach for greatly lengthening the lifespan of unattended WSNs.