Frontiers in Human Neuroscience (Jul 2021)

Auditory Pattern Representations Under Conditions of Uncertainty—An ERP Study

  • Maria Bader,
  • Erich Schröger,
  • Sabine Grimm

DOI
https://doi.org/10.3389/fnhum.2021.682820
Journal volume & issue
Vol. 15

Abstract

Read online

The auditory system is able to recognize auditory objects and is thought to form predictive models of them even though the acoustic information arriving at our ears is often imperfect, intermixed, or distorted. We investigated implicit regularity extraction for acoustically intact versus disrupted six-tone sound patterns via event-related potentials (ERPs). In an exact-repetition condition, identical patterns were repeated; in two distorted-repetition conditions, one randomly chosen segment in each sound pattern was replaced either by white noise or by a wrong pitch. In a roving-standard paradigm, sound patterns were repeated 1–12 times (standards) in a row before a new pattern (deviant) occurred. The participants were not informed about the roving rule and had to detect rarely occurring loudness changes. Behavioral detectability of pattern changes was assessed in a subsequent behavioral task. Pattern changes (standard vs. deviant) elicited mismatch negativity (MMN) and P3a, and were behaviorally detected above the chance level in all conditions, suggesting that the auditory system extracts regularities despite distortions in the acoustic input. However, MMN and P3a amplitude were decreased by distortions. At the level of MMN, both types of distortions caused similar impairments, suggesting that auditory regularity extraction is largely determined by the stimulus statistics of matching information. At the level of P3a, wrong-pitch distortions caused larger decreases than white-noise distortions. Wrong-pitch distortions likely prevented the engagement of restoration mechanisms and the segregation of disrupted from true pattern segments, causing stronger informational interference with the relevant pattern information.

Keywords