Discrete Mathematics & Theoretical Computer Science (Nov 2018)

Decycling a graph by the removal of a matching: new algorithmic and structural aspects in some classes of graphs

  • Fábio Protti,
  • Uéverton S. Souza

DOI
https://doi.org/10.23638/DMTCS-20-2-15
Journal volume & issue
Vol. vol. 20 no. 2, no. Graph Theory

Abstract

Read online

A graph $G$ is {\em matching-decyclable} if it has a matching $M$ such that $G-M$ is acyclic. Deciding whether $G$ is matching-decyclable is an NP-complete problem even if $G$ is 2-connected, planar, and subcubic. In this work we present results on matching-decyclability in the following classes: Hamiltonian subcubic graphs, chordal graphs, and distance-hereditary graphs. In Hamiltonian subcubic graphs we show that deciding matching-decyclability is NP-complete even if there are exactly two vertices of degree two. For chordal and distance-hereditary graphs, we present characterizations of matching-decyclability that lead to $O(n)$-time recognition algorithms.

Keywords