Mathematical Biosciences and Engineering (Aug 2021)

Global attractors, extremal stability and periodicity for a delayed population model with survival rate on time scales

  • Jaqueline G. Mesquita,
  • Urszula Ostaszewska,
  • Ewa Schmeidel ,
  • Małgorzata Zdanowicz

DOI
https://doi.org/10.3934/mbe.2021339
Journal volume & issue
Vol. 18, no. 5
pp. 6819 – 6840

Abstract

Read online

In this paper, we investigate the existence of global attractors, extreme stability, periodicity and asymptotically periodicity of solutions of the delayed population model with survival rate on isolated time scales given by $ x^{\Delta} (t) = \gamma(t) x(t) + \dfrac{x(d(t))}{\mu(t)}e^{r(t)\mu(t)\left(1 - \frac{x(d(t))}{\mu(t)}\right)}, \ \ t \in \mathbb T. $ We present many examples to illustrate our results, considering different time scales.

Keywords