International Journal of COPD (May 2018)
Is the 6-minute pegboard and ring test valid to evaluate upper limb function in hospitalized patients with acute exacerbation of COPD?
Abstract
Rosimeire Marcos Felisberto,1 Cassia Fabiane de Barros,1 Kelly Cristina Albanezi Nucci,1 Andre Luis Pereira de Albuquerque,1 Elaine Paulin,2 Christina May Moran de Brito,1 Wellington Pereira Yamaguti1 1Hospital Sírio-Libanês, São Paulo, SP, Brazil; 2Universidade do Estado de Santa Catarina (UDESC), Florianópolis, SC, Brazil Background: The 6-minute pegboard and ring test (6-PBRT) is a useful test for assessing the functional capacity of upper limbs in patients with stable COPD. Although 6-PBRT has been validated in stable patients, the possibility of a high floor effect could compromise the validity of the test in the hospital setting. The aim of this study was to verify the convergent validity of 6-PBRT in hospitalized patients with acute exacerbation of COPD (AECOPD). Methods: A cross-sectional study was conducted in a tertiary hospital. Patients who were hospitalized due to AECOPD and healthy elderly participants, voluntarily recruited from the community, were considered for inclusion. All participants underwent a 6-PBRT. Isokinetic evaluation to measure the strength and endurance of elbow flexors and extensors, handgrip strength (HGS), spirometry testing, the modified Pulmonary Functional Status Dyspnea Questionnaire (PFSDQ-M), the COPD assessment test (CAT), and symptoms of dyspnea and fatigue were all measured as comparisons for convergent validity. Good convergent validity was considered if >75% of these hypotheses could be confirmed (correlation coefficient>0.50). Results: A total of 17 patients with AECOPD (70.9±5.1 years and forced expiratory volume in 1 second [FEV1] of 41.8%±17.9% of predicted) and 11 healthy elderly subjects were included. The HGS showed a significant strong correlation with 6-PBRT performance (r=0.70; p=0.002). The performance in 6-PBRT presented a significant moderate correlation with elbow flexor torque peak (r=0.52; p=0.03) and elbow extensor torque peak (r=0.61; p=0.01). The total muscular work of the 15 isokinetic contractions of the elbow flexor and extensor muscles showed a significant moderate correlation with the performance in 6-PBRT (r=0.59; p=0.01 and r=0.57; p=0.02, respectively). Concerning the endurance of elbow flexors and extensors, there was a significant moderate correlation with 6-PBRT performance (r=-0.50; p=0.04 and r=-0.51; p=0.03, respectively). In relation to the upper-extremity physical activities of daily living (ADLs) assessed by means of PFSDQ-M, there was a significant moderate correlation of 6-PBRT with three domains: influence of dyspnea on ADLs (r=-0.66; p<0.001), influence of fatigue on ADLs (r=-0.60; p=0.01), and change in ADLs in relation to the period before the disease onset (r=-0.51; p=0.03). The CAT was also correlated with 6-PBRT (r=-0.51; p=0.03). Finally, the performance in 6-PBRT showed a significant moderate correlation with the increase in dyspnea (r=-0.63; p=0.01) and a strong correlation with the increase in fatigue of upper limbs (r=-0.76; p<0.001) in patients with AECOPD. Convergent validity was considered adequate, since 81% from 16 predefined hypotheses were confirmed. There was no correlation between 6-PBRT and patients’ height. The performance in 6-PBRT was worse in patients with AECOPD compared to healthy elderly individuals (248.7±63.0 vs 361.6±49.9 number of moved rings; p<0.001). Conclusion: The 6-PBRT is valid for the evaluation of functional capacity of upper limbs in hospitalized patients with AECOPD. Keywords: COPD, exacerbation, skeletal muscle, physical activity, exercise capacity