Agronomy (Mar 2021)

Response of Rice Algal Assemblage to Fertilizer and Chemical Application: Implications for Early Algal Bloom Management

  • Sara Ohadi,
  • Amar Godar,
  • John Madsen,
  • Kassim Al-Khatib

DOI
https://doi.org/10.3390/agronomy11030542
Journal volume & issue
Vol. 11, no. 3
p. 542

Abstract

Read online

California water-seeded rice is challenged with the rapid growth of nuisance algae at the beginning of the season. Rice seedlings entangled in the algal mat may not be established, causing empty rice patches in the field. Two separate studies were conducted to (1) evaluate the effect of nutrients (nitrogen and phosphorous) on algae growth, and (2) test various chemical options to control algae. Both studies utilized 19 L buckets inoculated with algae collected from a rice field. In the nutrient evaluation study, 36 nutrient treatments obtained from a combination of nitrogen (0, 60, 120, 180, 240 and 300 kg ha−1) and phosphorous (0, 20, 40, 60, 80 and 100 kg ha−1) rates were applied into the buckets, while eight chemicals with potential for algae control (two Protox inhibitor herbicides, four copper-based compounds, hydrogen peroxide, Zinc sulfate) were tested in the second experiment. In addition, a yeast extract-based surfactant (AMP activator) was tested in combination with a chelated copper formulation (Algimycin) and hydrogen peroxide. The studies had a completely randomized design with three replicates and each study was repeated two times. The result from the nutrient evaluation study showed that nitrogen and phosphorus can independently cause change in algae growth as reflected in the fresh and dry biomass. Moreover, low rates of either nitrogen or phosphorus resulted in a rapid increase in algae biomass and water chlorophyll a content, whereas the growth of algae declined at higher rates of applied fertilizer. Among tested chemicals in the second experiment, the chelated formulation of copper (Algimycin PWF) controlled algae (85%) better than the ethanolamine formulations [Cutrine-Ultra (70%) and Cutrine-Plus (52%)] and elemental copper (crystalline copper sulfate) (75%). Protox herbicides (oxyfluorfen and oxadiazon) were able to control algae by up to 70%. Hydrogen peroxide controlled algae by 50% and its efficacy dropped dramatically five days after treatment (DAT). Zinc sulfate was only effective at 1 DAT and algae recovered rapidly after that. Combining fertilizer management practices with chemical options will enable us toward an integrative approach for early algal bloom in the rice cropping system.

Keywords