Soil Systems (Feb 2023)

Characterization of Phosphate Compounds along a Catena from Arable and Wetland Soil to Sediments in a Baltic Sea lagoon

  • Julia Prüter,
  • Rhena Schumann,
  • Wantana Klysubun,
  • Peter Leinweber

DOI
https://doi.org/10.3390/soilsystems7010015
Journal volume & issue
Vol. 7, no. 1
p. 15

Abstract

Read online

Phosphorus (P) is an indispensable nutrient for arable crops, but at the same time, contributes to excessive eutrophication in aquatic ecosystems. Knowledge about P is essential to assess the possible risks of P being transported towards vulnerable aquatic ecosystems. Our objective was to characterize P along a catena from arable and wetland soils towards aquatic sediments of a shallow lagoon of the Baltic Sea. The characterization of P in soil and sediment samples included a modified sequential P fractionation and P K-edge X-ray absorption near edge structure (XANES) spectroscopy. The concentrations of total P ranged between 390 and 430 mg kg−1 in the arable soils, between 728 and 2258 mg kg−1 in wetland soils and between 132 and 602 mg kg−1 in lagoon sediments. Generally, two sinks for P were revealed along the catena. The wetland soil trapped moderately stable P, Al-P and molybdate-unreactive P (MUP), which are most likely organically bound phosphates. Sediments at the deepest position of the catena acted as a sink for, MUP compounds among the lagoon sediments. Thus, wetlands formed by reed belts can help to prevent the direct transfer of P from arable soils to adjacent waters and deeper basins and help to avoid excessive eutrophication in shallow aquatic ecosystems.

Keywords