The Egyptian Journal of Radiology and Nuclear Medicine (Sep 2021)

Evaluation of textural-based radiomics features for differentiation of COVID-19 pneumonia from non-COVID pneumonia

  • Yunus Soleymani,
  • Amir Reza Jahanshahi,
  • Maryam Hefzi,
  • Mona Fazel Ghaziani,
  • Amin Pourfarshid,
  • Davood Khezerloo

DOI
https://doi.org/10.1186/s43055-021-00592-0
Journal volume & issue
Vol. 52, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background The false-positive rate of computed tomography (CT) images in the diagnosis of coronavirus disease 2019 (COVID-19) is a challenge for the management in the pandemic. The main purpose of this study is to investigate the textural radiomics features on chest CT images of COVID-19 pneumonia patients and compare them with those of non-COVID pneumonia. This is a retrospective study. Some textural radiomics features were extracted from the CT images of 66 patients with COVID-19 pneumonia and 40 with non-COVID pneumonia. For radiomics analysis, the regions of interest (ROIs) were manually identified inside the pulmonary ground-glass opacities. For each ROI, 12 textural features were obtained and, then, statistical analysis was performed to assess the differences in these features between the two study groups. Results 8 of the 12 texture features demonstrated a significant difference (P < 0.05) in two groups, with COVID-19 pneumonia lesions tending to be more heterogeneous in comparison with the non-COVID cases. Among the 8 significant features, only two (homogeneity and energy) were found to be higher in non-COVID cases. Conclusions Textural radiomics features can be used for differentiating COVID-19 pneumonia from non-COVID pneumonia, as a non-invasive method, and help with better prognosis and diagnosis of COVID-19 patients.

Keywords