BMJ Open Respiratory Research (Jan 2021)

Survival models to support shared decision-making about advance care planning for people with advanced stage cystic fibrosis

  • Meng Zhang,
  • Meredith Akerman,
  • Nina Kohn,
  • Anna Mathew,
  • Negin Hajizadeh,
  • Denis Hadjiliadis,
  • Janice Wang,
  • Martin L Lesser

DOI
https://doi.org/10.1136/bmjresp-2020-000794
Journal volume & issue
Vol. 8, no. 1

Abstract

Read online

Background For people with advanced stage cystic fibrosis (CF), tailored survival estimates could facilitate preparation for decision-making in the event of acutely deteriorating respiratory function.Methods We used the US CF Foundation national database (2008–2013) to identify adult people with incident advanced stage CF (forced expiratory volume in 1 s (FEV1) ≤45% predicted). Using the lasso method for variable selection, we divided the dataset into training and validation samples (2:1), and developed two multivariable Cox proportional hazards models to calculate probabilities of survival from baseline (T0 model), and from 1 year after (T12 model). We also performed Kaplan-Meier survival analyses.Results 4752 people were included. For the T0 model, FEV1; insurance; non-invasive ventilation; supplemental oxygen; Burkholderia colonisation; cirrhosis; depression; dialysis; current smoking; unclassifiable mutation class and cumulative CF exacerbations predicted increased mortality. Baseline transplant evaluation status of ‘accepted, on waiting list’ predicted decreased mortality. For the T12 model, interim decrease in FEV1 >10%, and pulmonary exacerbations additionally increased predicted mortality. Lung transplantation was associated with lower mortality. Of the 4752, 93.5%, 86.4%, 79.7% and 73.9% survived to 1, 2, 3 and 4 years, respectively, without considering any confounding variables. The models had moderate predictive ability indicated by the area under the time-dependent receiver operating characteristic curve (0.787, 95% CI 0.769 to 0.794 for T0 model; and 0.779, 95% CI 0.767 to 0.797 for T12 model).Conclusion We have developed models predicting survival in people with incident advanced stage CF, which can be reapplied over time to support shared decision-making about end-of-life treatment choices and lung transplantation. These estimates must be updated as data become available regarding long-term outcomes for people treated with CF transmembrane conductance regulator modulators.