Biotechnology for Biofuels (Sep 2018)

The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam

  • Xianbo Su,
  • Weizhong Zhao,
  • Daping Xia

DOI
https://doi.org/10.1186/s13068-018-1237-2
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Background Biogenic and biogenic-thermogenic coalbed methane (CBM) are important energy reserves for unconventional natural gas. Thus, to investigate biogenic gas formation mechanisms, a series of fresh coal samples from several representative areas of China were analyzed to detect hydrogen-producing bacteria and methanogens in an in situ coal seam. Complete microbial DNA sequences were extracted from enrichment cultures grown on coal using the Miseq high-throughput sequencing technique to study the diversity of microbial communities. The species present and differences between the dominant hydrogen-producing bacteria and methanogens in the coal seam are then considered based on environmental factors. Results Sequences in the Archaea domain were classified into four phyla and included members from Euryarchaeota, Thaumarchaeota, Woesearchaeota, and Pacearchaeota. The Bacteria domain included members of the phyla: Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Acidobacteria, Verrucomicrobia, Planctomycetes, Chloroflexi, and Nitrospirae. The hydrogen-producing bacteria was dominated by the genera: Clostridium, Enterobacter, Klebsiella, Citrobacter, and Bacillus; the methanogens included the genera: Methanorix, Methanosarcina, Methanoculleus, Methanobrevibacter, Methanobacterium, Methanofollis, and Methanomassiliicoccus. Conclusion Traces of hydrogen-producing bacteria and methanogens were detected in both biogenic and non-biogenic CBM areas. The diversity and abundance of bacteria in the biogenic CBM areas are relatively higher than in the areas without biogenic CBM. The community structure and distribution characteristics depend on coal rank, trace metal elements, temperature, depth and groundwater dynamic conditions. Biogenic gas was mainly composed of hydrogen and methane, the difference and diversity were caused by microbe-specific fermentation of substrates; as well as by the environmental conditions. This discovery is a significant contribution to extreme microbiology, and thus lays the foundation for research on biogenic CBM.

Keywords