EPJ Web of Conferences (Jan 2022)

Learning from model grids: Tracers of the ionization fraction in the ISM

  • Bron Emeric,
  • Roueff Evelyne,
  • Gerin Maryvonne,
  • Pety Jérôme,
  • Gratier Pierre,
  • Le Petit Franck,
  • Guzman Viviana,
  • Orkisz Jan,
  • de Souza Magalhaes Victor,
  • Gaudel Mathilde,
  • Palud Pierre,
  • Einig Lucas,
  • Bardeau Sébastien,
  • Gerin Maryvonne,
  • Chainais Pierre,
  • Chanussot Jocelyn,
  • Goicoechea Javier,
  • Hughes Annie,
  • Kainulainen Jouni,
  • Languignon David,
  • Le Bourlot Jacques,
  • Levrier François,
  • Lis Darek,
  • Liszt Harvey,
  • Öberg Karin,
  • Peretto Nicolas,
  • Roueff Antoine,
  • Sievers Albrecht,
  • Thouvenin Pierre-Antoine,
  • Tremblin Pascal

DOI
https://doi.org/10.1051/epjconf/202226500023
Journal volume & issue
Vol. 265
p. 00023

Abstract

Read online

The ionization fraction in neutral interstellar clouds is a key physical parameter controlling multiple physical and chemical processes, and varying by orders of magnitude from the UV irradiated surface of the cloud to its cosmic-ray dominated central regions. Traditional observational tracers of the ionization fraction, which mostly rely on deuteration ratios of molecules like HCO+, suffer from the fact that the deuterated molecules are only detected in a tiny fraction of a given Giant Molecular Cloud (GMC). In [1], we propose a machine learning-based, semi-automatic method to search in a large dataset of astrochemical model results for new tracers of the ionization fraction, and propose several new tracers relevant in different ranges of physical conditions.