Biomolecules (Jan 2022)

Histone 2B Facilitates Plasminogen-Enhanced Endothelial Migration through Protease-Activated Receptor 1 (PAR1) and Protease-Activated Receptor 2 (PAR2)

  • Mitali Das,
  • Sujay Subbayya Ithychanda,
  • Edward F. Plow

DOI
https://doi.org/10.3390/biom12020211
Journal volume & issue
Vol. 12, no. 2
p. 211

Abstract

Read online

Plasminogen and its multiple receptors have been implicated in the responses of many different cell types. Among these receptors, histone 2B (H2B) has been shown to play a prominent role in macrophage responses. The contribution of H2B to plasminogen-induced endothelial migration, an event relevant to wound healing and angiogenesis, is unknown. Plasminogen enhanced the migration of endothelial cells, which was inhibited by both Protease-Activated Receptor-1 (PAR1) and 2 (PAR2) antagonists. H2B was detected on viable endothelial cells of venous and arterial origin, and an antibody to H2B that blocks plasminogen binding also inhibited the plasminogen-dependent migration by these cells. The antibody blockade was as effective as PAR1 or PAR2 antagonists in inhibiting endothelial cell migration. In pull-down experiments, H2B formed a complex with both PAR1 and PAR2 but not β3 integrin, another receptor implicated in endothelial migration in the presence of plasminogen. H2B was found to be associated with clathrin adapator protein, AP2µ (clathrin AP2µ) and β-arrestin2, which are central to the internationalization/signaling machinery of the PARs. These associations with PAR1-clathrin adaptor AP2µ- and PAR2-β-arrestin2-dependent internalization/signaling pathways provide a mechanism to link plasminogen to responses such as wound healing and angiogenesis.

Keywords