Remote Sensing (Apr 2024)

SAM-Induced Pseudo Fully Supervised Learning for Weakly Supervised Object Detection in Remote Sensing Images

  • Xiaoliang Qian,
  • Chenyang Lin,
  • Zhiwu Chen,
  • Wei Wang

DOI
https://doi.org/10.3390/rs16091532
Journal volume & issue
Vol. 16, no. 9
p. 1532

Abstract

Read online

Weakly supervised object detection (WSOD) in remote sensing images (RSIs) aims to detect high-value targets by solely utilizing image-level category labels; however, two problems have not been well addressed by existing methods. Firstly, the seed instances (SIs) are mined solely relying on the category score (CS) of each proposal, which is inclined to concentrate on the most salient parts of the object; furthermore, they are unreliable because the robustness of the CS is not sufficient due to the fact that the inter-category similarity and intra-category diversity are more serious in RSIs. Secondly, the localization accuracy is limited by the proposals generated by the selective search or edge box algorithm. To address the first problem, a segment anything model (SAM)-induced seed instance-mining (SSIM) module is proposed, which mines the SIs according to the object quality score, which indicates the comprehensive characteristic of the category and the completeness of the object. To handle the second problem, a SAM-based pseudo-ground truth-mining (SPGTM) module is proposed to mine the pseudo-ground truth (PGT) instances, for which the localization is more accurate than traditional proposals by fully making use of the advantages of SAM, and the object-detection heads are trained by the PGT instances in a fully supervised manner. The ablation studies show the effectiveness of the SSIM and SPGTM modules. Comprehensive comparisons with 15 WSOD methods demonstrate the superiority of our method on two RSI datasets.

Keywords