Materials (Jan 2019)

Facile Preparation of Micrometer KClO4/Zr Energetic Composite Particles with Enhanced Light Radiation

  • Xiaoli Kang,
  • Chunhong Li,
  • Zhou Zheng,
  • Xudong Cui

DOI
https://doi.org/10.3390/ma12020199
Journal volume & issue
Vol. 12, no. 2
p. 199

Abstract

Read online

Developing energetic composite materials consisting of fuel and oxidizer is an effective strategy to enhance the energy release property. However, this strategy has rarely been applied in Potassium Perchlorate (KClO4)-containing energetic materials, even though KClO4 is a much stronger oxidizer than most previously reported metal-oxide oxidizer. One of the main obstacles is the lack of simple and in situ ways to introduce KClO4 into the composite. In present work, micrometer KClO4/Zirconium (KClO4/Zr) composite particles were successfully prepared using a facile chemical solution-deposition method. The structure and particle morphologies of as-obtained KClO4/Zr composite were characterized by X-ray diffraction (XRD) and scanning electronic microscope (SEM)-EDS (Energy Dispersive Spectrometer). The evolutionary combustion behavior was evaluated using flame-based light-radiation spectra and successive photography technique. Results showed that the morphology, light-radiation properties and flame-evolution characteristics of KClO4/Zr composite varied with the content of KClO4 and the particle size of Zr. Compared with the mechanical mixture of KClO4/Zr, the KClO4/Zr composite showed much higher light-radiation intensity and longer light-emission duration time after reasonably controlling the preparation parameters. Flame photographs revealed that the enhanced light radiation of KClO4/Zr composite should be ascribed to higher use efficiency of “oxygen” in the oxidizer, which promoted both the solid–solid and solid–gas reaction pathways between KClO4 and Zr.

Keywords