Metals (Oct 2022)

Corrosion Behavior of Mg-<i>x</i>Gd-1Zn-0.4Zr Alloys with Different Gd Additions for Biomedical Application

  • Xue Geng,
  • Jiahao Jiang,
  • Xiaobo Zhang

DOI
https://doi.org/10.3390/met12101763
Journal volume & issue
Vol. 12, no. 10
p. 1763

Abstract

Read online

In recent years, Mg alloys have attracted increased attention for biomedical application owing to their good biodegradability, biocompatibility, and biomechanical properties. However, rapid corrosion is still one of the most common limitations for their implanted application. In this work, the microstructure and corrosion behavior of the solution- and aging-treated Mg-xGd-1Zn-0.4Zr (x = 3, 6, and 9 wt%, denoted as GZ31K, GZ61K, and GZ91K, respectively) alloys were studied using optical microscope (OM), scanning electron microscope (SEM), immersion tests, electrochemical tests, and quasi in situ corrosion method. The results show that block Gd-rich precipitates and needle-like Zr-Zn-rich precipitates are formed as well as α-Mg matrix. With the increase in Gd content, the precipitates increase and the grain size first reduces and then increases. Corrosion experiment results show that the GZ61K alloy has the best corrosion resistance and the GZ91K alloy shows the highest corrosion rate among the three alloys in simulated body fluid (SBF). It is found that α-Mg is preferentially corroded and the precipitates have better corrosion resistance as compared to the α-Mg matrix. The GZ61K alloy with the corrosion rate of 0.23 mm/y in SBF shows a promising prospect for biomedical application.

Keywords