Advanced Electronic Materials (Aug 2023)

The Effect of Direct Electron Beam Patterning on the Water Uptake and Ionic Conductivity of Nafion Thin Films

  • Ky V. Nguyen,
  • Jan G. Gluschke,
  • A. Bernardus Mostert,
  • Andrew Nelson,
  • Gregory Burwell,
  • Roman W. Lyttleton,
  • Hamish Cavaye,
  • Rebecca J.L. Welbourn,
  • Jakob Seidl,
  • Maxime Lagier,
  • Marta Sanchez Miranda,
  • James D. McGettrick,
  • Trystan Watson,
  • Paul Meredith,
  • Adam P. Micolich

DOI
https://doi.org/10.1002/aelm.202300199
Journal volume & issue
Vol. 9, no. 8
pp. n/a – n/a

Abstract

Read online

Abstract The effect of electron‐beam patterning on the water uptake and ionic conductivity of Nafion films using a combination of X‐ray photoelectron spectroscopy, quartz crystal microbalance studies, neutron reflectometry, and impedance spectroscopy is reported. The aim is to further characterize the nanoscale patterned Nafion structures recently used as a key element in novel ion‐to‐electron transducers by Gluschke et al. To enable this, the electron beam patterning process is developed for large areas, achieving patterning speeds approaching 1 cm2 h−1, and patterned areas as large as 7 cm2 for the neutron reflectometry studies. It is ultimately shown that electron‐beam patterning affects both the water uptake and the ionic conductivity, depending on film thickness. Type‐II adsorption isotherm behavior is seen for all films. For thick films (≈230 nm), a strong reduction in water uptake with electron‐beam patterning is found. In contrast, for thin films (≈30 nm), electron‐beam patterning enhances water uptake. Notably, for either thickness, the reduction in ionic conductivity arising from electron‐beam patterning is kept to less than an order of magnitude. Mechanisms are proposed for the observed behavior based on the known complex morphology of Nafion films to motivate future studies of electron‐beam processed Nafion.

Keywords