Scientific Reports (Aug 2021)

Biomolecular imaging of colorectal tumor lesions using a FITC-labeled scFv-Cκ fragment antibody

  • Hyung Il Kim,
  • Jinhyeon Kim,
  • Hyori Kim,
  • Hyeri Lee,
  • Yong Sik Yoon,
  • Sung Wook Hwang,
  • Sang Hyoung Park,
  • Dong-Hoon Yang,
  • Byong Duk Ye,
  • Jeong-Sik Byeon,
  • Suk-Kyun Yang,
  • Sun Young Kim,
  • Seung-Jae Myung

DOI
https://doi.org/10.1038/s41598-021-96281-z
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract For the sensitive diagnosis of colorectal cancer lesions, advanced molecular imaging techniques using cancer-specific targets have emerged. However, issues regarding the clearance of unbound probes and immunogenicity remain unresolved. To overcome these limitations, we developed a small-sized scFv antibody fragment conjugated with FITC for the real-time detection of colorectal cancer by in vivo molecular endoscopy imaging. A small-sized scFv fragment can target colon cancer secreted protein-2 (CCSP-2), highly expressed in colorectal adenocarcinoma tissues; moreover, its full-length IgG probe has been used for molecular imaging previously. To assess the efficacy of anti-CCSP-2 scFv-FITC, surgical specimens were obtained from 21 patients with colorectal cancer for ex vivo molecular fluorescence analysis, histology, and immunohistochemistry. Orthotopic mice were administered with anti-CCSP-2 scFv-FITC topically and intravenously, and distinct tumor lesions were observed by real-time fluorescence colonoscopy. The fluorescence imaging of human colon cancer specimens allowed the differentiation of malignant tissues from non-malignant tissues (p < 0.05), and the CCSP-2 expression level was found to be correlated with the fluorescence intensity. Here, we demonstrated the feasibility and safety of anti-CCSP-2 scFv-FITC for molecular imaging as well as its potential in real-time fluorescence colonoscopy for the differential diagnosis of tumor lesions.