Small Structures (Jul 2024)

Multiobjective‐Optimization MoS2/Cd‐ZnIn2S4/CdS Composites Prepared by In Situ Structure‐Tailored Technique for High‐Efficiency Hydrogen Generation

  • Wenxue Zhao,
  • Aihua Yan,
  • Zigao Su,
  • Fei Huang,
  • Quande Wang,
  • Shihang Li,
  • Shijian Lu,
  • Chuanjian Wang,
  • Tongyang Zhang,
  • Jixu Zhang,
  • Ye Gao,
  • Huaqi Yuan

DOI
https://doi.org/10.1002/sstr.202300569
Journal volume & issue
Vol. 5, no. 7
pp. n/a – n/a

Abstract

Read online

Photocatalytic water splitting into hydrogen production provides a new avenue to produce clean chemical fuels. However, developing high‐efficiency photocatalytic materials still remains a challenge till now. Herein, multiobjective‐optimization MoS2/Cd‐ZnIn2S4/CdS (MS/CZIS/CS) composites are successfully constructed by an in situ structure‐tailored technique. Benefiting from the synergistic feature integrating sulfur vacancy, II‐type CZIS/CS heterojunction and Schottky‐type MS/CS heterojunction, such composites not only effectively steer photogenerated carrier transfer but also markedly expedite surface reaction kinetics for hydrogen reduction reaction. As a result, an optimal hydrogen evolution rate of 11.49 mmol g−1 h−1 is achieved over the MS/CZIS/CS catalysts, which is approximately 4.79 times higher than that of pristine ZIS (2.40 mmol g−1 h−1). This work provides some new inspirations for the steering of carrier transfer and the design of multiobjective‐optimization photocatalysts with high efficiency.

Keywords