Translational Oncology (Jul 2024)
Deubiquitinase UCHL1 stabilizes KDM4B to augment VEGF signaling and confer bevacizumab resistance in clear cell renal cell carcinoma
Abstract
Background: Bevacizumab resistance poses barriers to targeted therapy in clear cell renal cell carcinoma (ccRCC). Whether there exist epigenetic targets that modulate bevacizumab sensitivity in ccRCC remains indefinite. The focus of this study is to explore the role of UCHL1 in ccRCC. Methods: Both in vitro and in vivo experiments were utilized to investigate the roles of UCHL1 in ccRCC. In vivo ubiquitination assays were performed to validate the posttranslational modification of KDM4B by UCHL1. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were utilized to explore KDM4B/VEGFA epigenetic regulations. Results: UCHL1 was increased in ccRCC and associated with unfavorable survival outcomes in patients. UCHL1 was required for ccRCC growth and migration. Mechanistically, the wild-type UCHL1, but not C90A mutant, mediated the deubiquitination of KDM4B and thereby stabilized its proteins. KDM4B was up-regulated in ccRCC and potentiated cell growth. UCHL1 depended on KDM4B to augment ccRCC malignancies. Targeting UCHL1 suppressed tumor growth, colony formation, and migration abilities, which could be rescued by KDM4B. Furthermore, KDM4B was directly bound to the promoter region of VEGFA, abolishing repressive H3K9me3 modifications. KDM4B coordinated with HIF2α to activate VEGFA transcriptional levels. UCHL1-KDM4B axis governs VEGFA levels to sustain the angiogenesis phenotypes. Finally, a specific small-molecule inhibitor (6RK73) targeting UCHL1 remarkably inhibited ccRCC progression and further sensitized ccRCC to bevacizumab treatment. Conclusion: Overall, this study defined an epigenetic mechanism of UCHL1/KDM4B in activating VEGF signaling. The UCHL1-KDM4B axis represents a novel target for treating ccRCC and improving the efficacy of anti-angiogenesis therapy.