Scientific Reports (Jan 2022)

Country-specific optimization strategy for testing through contact tracing can help maintain a low reproduction number ( $$R_{0}$$ R 0 ) during unlock

  • Uddipan Sarma,
  • Bhaswar Ghosh

DOI
https://doi.org/10.1038/s41598-021-03846-z
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 15

Abstract

Read online

Abstract In response to the COVID19 pandemic, many countries have implemented lockdowns in multiple phases to ensure social distancing and quarantining of the infected subjects. Subsequent unlocks to reopen the economies started next waves of infection and imposed an extra burden on quarantine to keep the reproduction number ( $$R_{0}$$ R 0 ) < 1. However, most countries could not effectively contain the infection spread, suggesting identification of the potential sources weakening the effect of lockdowns could help design better informed lockdown-unlock cycles in the future. Here, through building quantitative epidemic models and analyzing the metadata of 50 countries from across the continents we first found that the estimated value of $$R_{0}$$ R 0 , adjusted w.r.t the distribution of medical facilities and virus clades correlates strongly with the testing rates in a country. Since the testing capacity of a country is limited by its medical resources, we investigated if a cost–benefit trade-off can be designed connecting testing rate and extent of unlocking. We present a strategy to optimize this trade-off in a country specific manner by providing a quantitative estimate of testing and quarantine rates required to allow different extents of unlocks while aiming to maintain $$R_{0} < 1$$ R 0 < 1 . We further show that a small fraction of superspreaders can dramatically increase the number of infected individuals even during strict lockdowns by strengthening the positive feedback loop driving infection spread. Harnessing the benefit of optimized country-specific testing rates would critically require minimizing the movement of these superspreaders via strict social distancing norms, such that the positive feedback driven switch-like exponential spread phase of infection can be avoided/delayed.