Applied Sciences (Sep 2022)

Anti-Islanding Method Development Based on Reactive Power Variation under Grid Support Environments

  • Byunggyu Yu

DOI
https://doi.org/10.3390/app12189074
Journal volume & issue
Vol. 12, no. 18
p. 9074

Abstract

Read online

As the proportion of distributed generation (DG), including Photovoltaic (PV) generation, in the power grid system increases, there are dropouts of large-scale distributed power generation sources due to some transient conditions that negatively affect the power grid stability and power quality. Accordingly, the inverter for DG generation is in a transition period, requiring more complex control performance. Anti-islanding function requirements in particular are becoming more strict because sophisticated grid-connection requirements are demanded, such as voltage ride-through, frequency ride-through, rate of change of frequency, and other functions. Thus, highly advanced anti-islanding methods are required to detect the islanding condition quickly and accurately to stop the inverter. This paper presents the improved anti-islanding method based on reactive power variation (RPV) under grid-support environments for single-phase DG inverters. In order to verify the validity of the proposed method, PSIM simulation was conducted. The proposed method meets the requirements of IEEE Std. 1547-2018 and KS C 8564:2021 by preventing islanding within 0.007 s under the newly adopted voltage/frequency trip setting, while the conventional RPV method fails.

Keywords