An analysis of the processes of plastic deformation and acoustic relaxation in a high-entropy alloy, Al0.5CoCrCuFeNi, was carried out. The following were established: dominant dislocation defects; types of barriers that prevent the movement of dislocations; mechanisms of thermally activated movement of various elements of dislocation lines through barriers at room and low temperatures. Based on modern dislocation theory, quantitative estimates were obtained for the most important characteristics of dislocations and their interaction with barriers.