Electrical engineering & Electromechanics (Jun 2024)

Enhancing grid stability and low voltage ride through capability using type 2 fuzzy controlled dynamic voltage restorer

  • Ch. Sajan,
  • P. Satish Kumar,
  • P. Virtic

DOI
https://doi.org/10.20998/2074-272X.2024.4.04
Journal volume & issue
Vol. 2024, no. 4
pp. 31 – 41

Abstract

Read online

Introduction. The integration of Renewable Energy Sources (RESs), particularly Wind Energy Conversion Systems (WECS), is vital for reducing reliance on fossil fuels and addressing climate change. However, this transition poses challenges, including ensuring grid stability in the face of intermittent RESs. Compliance with grid codes is crucial, with a focus on Low Voltage Ride Through (LVRT) capability. Problem. The intermittent nature of RESs, specifically in Permanent Magnet Synchronous Generator (PMSG) based WECS, presents challenges to grid stability during voltage dips. Goal. To enhance voltage stability and LVRT capability in PMSG-based WECS by integrating a Dynamic Voltage Restorer (DVR) with an energy storage device. This involves regulating the input DC voltage to the DVR using a type 2 fuzzy controller, adapting intelligently to changing conditions. Methodology. DVR, powered by an energy storage device, is strategically integrated with WECS. A type 2 fuzzy controller regulates the DC voltage to DVR. The rectified WECS output undergoes processing through an isolated flyback converter. A 31-level Cascaded H-Bridge Multilevel Inverter (CHBMLI) with PI control ensures high-quality AC output. Results. The validation of developed system is executed using MATLAB/Simulink revealing a reduced Total Harmonic Distortion (THD) value of 1.8 %, ensuring significance in LVRT capability. Originality. The strategic integration of DVR with PMSG-based WECS, addresses the LVRT challenges. The use of type 2 fuzzy controller for intelligent voltage regulation and a sophisticated multilevel inverter contributes to the uniqueness of proposed solution. Practical value. The developed system provides benefits by ensuring reliable LVRT capability in PMSG-based WECS with reduced THD of 1.8 % indicating improved grid compatibility. References 26, tables 5, figures 20.

Keywords