Microorganisms (Oct 2021)

Fe<sup>2+</sup> Alleviated the Toxicity of ZnO Nanoparticles to <i>Pseudomonas tolaasii</i> Y-11 by Changing Nanoparticles Behavior in Solution

  • Yuran Yang,
  • Can Zhang,
  • Kaili Li,
  • Zhenlun Li

DOI
https://doi.org/10.3390/microorganisms9112189
Journal volume & issue
Vol. 9, no. 11
p. 2189

Abstract

Read online

The negative effect of ZnO nanoparticles (ZnO-NPs) on the biological removal of nitrate (NO3−) has received extensive attention, but the underlying mechanism is controversial. Additionally, there is no research on Fe2+ used to alleviate the cytotoxicity of NPs. In this paper, the effects of different doses of ZnO-NPs on the growth and NO3− removal of Pseudomonas tolaasii Y-11 were studied with or without Fe2+. The results showed that ZnO-NPs had a dose-dependent inhibition on the growth and NO3− removal of Pseudomonas tolaasii Y-11 and achieved cytotoxic effects through both the NPs themselves and the released Zn2+. The addition of Fe2+ changed the behavior of ZnO-NPs in an aqueous solution (inhibiting the release of toxic Zn2+ and promoting the aggregation of ZnO-NPs), thereby alleviating the poisonous effect of ZnO-NPs on the growth and nitrogen removal of P. tolaasii Y-11. This study provides a theoretical method for exploring the mitigation of the acute toxicity of ZnO-NPs to denitrifying microorganisms.

Keywords