Frontiers in Microbiology (Jun 2020)

Microbial Composition and Functional Diversity Differ Across Urban Green Infrastructure Types

  • Aman S. Gill,
  • Kai Purnell,
  • Matthew I. Palmer,
  • Jaime Stein,
  • Krista L. McGuire

DOI
https://doi.org/10.3389/fmicb.2020.00912
Journal volume & issue
Vol. 11

Abstract

Read online

Functional and biogeographical properties of soil microbial communities in urban ecosystems are poorly understood despite their role in metabolic processes underlying valuable ecosystem services. The worldwide emergence of engineered habitats in urban landscapes—green roofs, bioswales, and other types of soil-based green infrastructure—highlights the importance of understanding how environmental changes affect the community assembly processes that shape urban microbial diversity and function. In this study we investigated (1) whether engineered green roofs and bioswales in New York City had distinct microbial community composition and trait-associated diversity compared to non-engineered soils in parks and tree pits, and (2) if these patterns were consistent with divergent community assembly processes associated with engineered specifications of green infrastructure habitats not present in conventional, non-engineered green infrastructure; specifically, tree pit and park lawn soils. We found that green roofs and bioswales each had distinct bacterial and fungal communities, but that community composition and diversity were not significantly associated with geographic distance, suggesting that the processes structuring these differences are related to aspects of the habitats themselves. Bioswales, and to a lesser extent green roofs, also contained increased functional potential compared to conventional GI soils, based on the diversity and abundance of taxa associated with nitrogen cycling, biodegradation, decomposition, and traits positively associated with plant growth. We discuss these results in the context of community assembly theory, concluding that urban soil microbial community composition and diversity in engineered habitats are driven largely by environmental filtering, whereas stochastic processes are more important among non-engineered soils.

Keywords