Scientific Reports (Sep 2024)

A novel computational signal processing framework towards multimodal vital signs extraction using neck-worn wearable devices

  • Rawan S. Abdulsadig,
  • Esther Rodriguez-Villegas

DOI
https://doi.org/10.1038/s41598-024-72184-7
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 20

Abstract

Read online

Abstract Pulse rate (PR) and respiratory rate (RR) are two of the most important vital signs. Monitoring them would benefit from easy-to-use technologies. Hence, wearable devices would, in principle, be ideal candidates for such systems. The neck, although highly susceptible to artifacts, presents an attractive location for a diverse pool of physiological biomarkers monitoring purposes such as airflow sensing in a non-obstructive manner. This paper presents a methodology for PR and RR estimation using photoplethysmography (PPG) and accelerometry (Acc) sensors placed on the neck. Neck PPG and Acc signals were recorded from 22 healthy participants for RR estimation, where the resting subjects performed guided breathing following a visual metronome. Neck PPG signals were obtained from 16 healthy participants who breathed through an altitude generator machine in order to acquire a wider range of PR readings while at rest. The proposed methodology was able to provide rate estimates via a combination of recursive FFT-based dominance scoring coupled with an exponentially weighted moving average (EWMA)-driven aggregation scheme. The recursion aimed at bypassing sudden intra-window amplitude deviations caused by momentary artifacts, while the EWMA-based aggregation was utilized for handling inter-window artifact-induced deviations. To further improve estimation stability and confidence, estimates were calculated in the form of rate bands taking into account the relevant clinically acceptable error margins, and results when considering rate values and rate bands are presented and discussed. The framework was able to achieve an overall pulse rate value accuracy of $$93.67\pm 7.64$$ 93.67 ± 7.64 % within the clinically acceptable ± 5 BPM with reference to the gold-standard reference devices while providing an overall respiratory rate value accuracy within the clinically appropriate ± 3 BrPM of $$94.94\pm 3.56$$ 94.94 ± 3.56 % with reference to the guiding visual metronome, and $$88.4\pm 7.63$$ 88.4 ± 7.63 % with respect to the gold-standard reference device. The proposed methodology achieves acceptable PR and RR estimation capabilities, even when signals are acquired from an unusual location such as the neck. This work introduces novel ideas that can lead to the development of medical device outputs for PR and RR monitoring, especially capitalizing on the advantages of the neck as a multi-modal physiological monitoring location.

Keywords