Synthesis, Characterization, and Performance of Semi-Refined Kappa Carrageenan-Based Film Incorporating Cassava Starch
Camellia Panatarani,
Danar Praseptiangga,
Putut Ismu Widjanarko,
Sundoro Yoga Azhary,
Puspita Nurlilasari,
Emma Rochima,
I Made Joni
Affiliations
Camellia Panatarani
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
Danar Praseptiangga
Research Collaboration Center for Marine Biomaterials, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
Putut Ismu Widjanarko
Department of Food Science and Technology, Faculty of Agriculture, Universitas Sebelas Maret (UNS), Jl. Ir. Sutami 36 A, Jebres 57126, Central Java, Indonesia
Sundoro Yoga Azhary
Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
Puspita Nurlilasari
Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
Emma Rochima
Functional Nano Powder University Center of Excellence, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
I Made Joni
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
This paper reports the incorporation of cassava starch (CS) at various concentrations into a previously developed ZnO/SiO2-semi-refined kappa carrageenan-based film (SRκC) bionanocomposite and evaluates its performance as minced chicken edible packaging. The incorporation of CS into SRκC-based films aims to provide multifunctional food packaging with enhanced surface morphology, thickness, mechanical properties, and transparency. The effect of the incorporation of various mixing ratios of CS and SRκC (CS:SRκC ratios of 1:3, 1:1, and 3:1) was investigated. The results show that the surface morphology, thickness, and mechanical properties of the SRκC-based films are increased by incorporating CS. Interestingly, a significant shelf-life improvement of up to 6 days is obtained for the application of the CS:SRκC 1:3 film as minced chicken packaging. It is concluded that the incorporation of CS into SRκC-based film is promising for extending the shelf life of minced chicken samples.