PLoS ONE (Jan 2014)
Conversion of adipose-derived stem cells into natural killer-like cells with anti-tumor activities in nude mice.
Abstract
Efforts to develop peripheral blood-derived nature killer (NK) cells into therapeutic products have been hampered by these cells' low abundance and histoincompatibility. On the other hand, derivation of NK-like cells from more abundant cell sources such as embryonic stem cells (ESCs) and umbilical cord blood (UCB) requires the selection of rare CD34+ cells. Thus, we sought to convert adipose-derived stem cells (ADSCs), which are abundant and natively CD34+, into NK-like cells. When grown in hematopoietic induction medium, ADSCs formed sphere clusters and expressed hematopoietic markers CD34, CD45, and KDR. Further induction in NK cell-specific medium resulted in a population of cells that expressed NK cell marker CD56, and thus termed ADSC-NK. Alternatively, the hematopoietically induced ADSCs were transduced with NK cell-specific transcription factor E4BP4 prior to induction in NK cell-specific medium. This latter population of cells, termed ADSC-NKE, expressed CD56 and additional NK cell markers such as CD16, CD94, CD158, CD314, FasL, and NKp46. ADSC-NKE was as potent as NK leukemia cell NKL in killing breast cancer cell MCF7 and prostate cancer cells DU145, PC3, LnCap, DuPro, C4-2 and CWR22, but exhibited no killing activity toward normal endothelial and smooth muscle cells. In nude mice test ADSC-NKE was able to significantly delay the progression of tumors formed by MCF7 and PC3. When injected into immunocompetent rats, ADSC-NKE was detectable in bone marrow and spleen for at least 5 weeks. Together, these results suggest that ADSCs can be converted into NK-like cells with anti-tumor activities.