Machines (Nov 2020)

Multibody-Based Piano Action: Validation of a Haptic Key

  • Sébastien Timmermans,
  • Bruno Dehez,
  • Paul Fisette

DOI
https://doi.org/10.3390/machines8040076
Journal volume & issue
Vol. 8, no. 4
p. 76

Abstract

Read online

A piano key prototype actuated by a custom-made linear actuator is proposed to enhance the touch of digital pianos by reproducing the force feedback of an acoustic piano action. This paper presents the design and the validation of the haptic device. The approach exploits a multibody model to compute the action dynamics and the corresponding force on the key in real time. More specifically, a grand piano model that includes the five action bodies, its geometry and the specific force laws, is computed in the haptic device. A presizing step along with Finite Element Method (FEM) analysis produced an especially made actuator satisfying the design requirements, in particular the highly dynamic nature of the force to be transmitted. Force peaks, up to 50 (N) in less than 20 (ms), are reachable with low power consumption. Compared to previous solutions: (i) the key physical characteristics are preserved; (ii) the feedback is based on a real-time multibody model that is easily configurable and interchangeable; (iii) an experimental validation of the actuator within the prototype is developed and demonstrates its feasibility. The results confirm that the voice coil can produce suitable haptic feedback. In particular, rendering a grand piano action within the device shows promising haptic force profiles.

Keywords