Bioactive Materials (Dec 2020)
In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites
Abstract
The present study aims to evaluate effect of hydroxyapatite (HA, Ca10(PO4)6OH2), a ceramic similar to natural bone, into AZ31B Mg alloy matrix on biomineralization and biocompatibility. The novel friction stir processing additive manufacturing route was employed to fabricate Mg-HA composites. Various HA contents (5, 10, 20 wt%) were incorporated into Mg matrix.Microstructural observation and chemical composition analysis revealed that refined Mg grains and dispersion of HA particles at micro/nanoscales were achieved in Mg-HA composites after the friction stir processing. The biomineralization evaluation were carried out using immersion experiments in simulated body fluid followed by mineral morphology observation and chemical composition analysis. The wettability measurements were conducted to correlate the biomineralization behavior. The results showed improvement in wettability and bone-like Ca/P ratio in apatite deposit on the composites compared to as-received Mg. In addition, the increase of blood compatibility, cell viability and spreading were found in the higher HA content composites, indicating the improved biocompatibility. Therefore, friction stir processed Mg-20 wt%HA composite exhibited the highest wettability and better cell adhesion among other composites due to the effect of increased HA content within Mg matrix.