Applied Sciences (Jul 2023)

BUU-LSPINE: A Thai Open Lumbar Spine Dataset for Spondylolisthesis Detection

  • Podchara Klinwichit,
  • Watcharaphong Yookwan,
  • Sornsupha Limchareon,
  • Krisana Chinnasarn,
  • Jun-Su Jang,
  • Athita Onuean

DOI
https://doi.org/10.3390/app13158646
Journal volume & issue
Vol. 13, no. 15
p. 8646

Abstract

Read online

(1) Background: Spondylolisthesis, a common disease among older individuals, involves the displacement of vertebrae. The condition may gradually manifest with age, allowing for potential prevention by the research of predictive algorithms. However, one key issue that hinders research in spondylolisthesis prediction algorithms is the need for publicly available spondylolisthesis datasets. (2) Purpose: This paper introduces BUU-LSPINE, a new dataset for the lumbar spine. It includes 3600 patients’ plain film images annotated with vertebral position, spondylolisthesis diagnosis, and lumbosacral transitional vertebrae (LSTV) ground truth. (4) Methods: We established an annotation pipeline to create the BUU-SPINE dataset and evaluated it in three experiments as follows: (1) lumbar vertebrae detection, (2) vertebral corner points extraction, and (3) spondylolisthesis prediction. (5) Results: Lumbar vertebrae detection achieved the highest precision rates of 81.93% on the AP view and 83.45% on the LA view using YOLOv5; vertebral corner point extraction achieved the lowest average error distance of 4.63 mm on the AP view using ResNet152V2 and 4.91 mm on the LA view using DenseNet201. Spondylolisthesis prediction reached the highest accuracy of 95.14% on the AP view and 92.26% on the LA view of a testing set using Support Vector Machine (SVM). (6) Discussions: The results of the three experiments highlight the potential of BUU-LSPINE in developing and evaluating algorithms for lumbar vertebrae detection and spondylolisthesis prediction. These steps are crucial in advancing the creation of a clinical decision support system (CDSS). Additionally, the findings demonstrate the impact of Lumbosacral transitional vertebrae (LSTV) conditions on lumbar detection algorithms.

Keywords