Complexity (Jan 2021)

Improving the Accuracy for Analyzing Heart Diseases Prediction Based on the Ensemble Method

  • Xiao-Yan Gao,
  • Abdelmegeid Amin Ali,
  • Hassan Shaban Hassan,
  • Eman M. Anwar

DOI
https://doi.org/10.1155/2021/6663455
Journal volume & issue
Vol. 2021

Abstract

Read online

Heart disease is the deadliest disease and one of leading causes of death worldwide. Machine learning is playing an essential role in the medical side. In this paper, ensemble learning methods are used to enhance the performance of predicting heart disease. Two features of extraction methods: linear discriminant analysis (LDA) and principal component analysis (PCA), are used to select essential features from the dataset. The comparison between machine learning algorithms and ensemble learning methods is applied to selected features. The different methods are used to evaluate models: accuracy, recall, precision, F-measure, and ROC.The results show the bagging ensemble learning method with decision tree has achieved the best performance.