Synthesis and characterization of hierarchical Ti3C2Tx MXene/graphitic-carbon nitride/activated carbon@luffa sponge composite for enhanced water desalination
MA Zaed,
Jayesh Cherusseri,
R. Saidur,
K.H. Tan,
A.K. Pandey
Affiliations
MA Zaed
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
Jayesh Cherusseri
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Engineering, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Corresponding author. Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
R. Saidur
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Engineering, School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK; Corresponding author. Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
K.H. Tan
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
A.K. Pandey
Research Centre for Nanomaterials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; CoE for Energy and Eco-Sustainability Research, Uttaranchal University, Dehradun, India
In this study, advanced solar steam technologies are explored for their potential applications in seawater desalination and wastewater purification. We have developed a three-dimensional photothermal evaporator using MXene, luffa sponge (LS), graphitic-carbon nitride (GCN) and activated carbon (AC). The hierarchical Ti3C2Tx MXene/GCN/AC@LS composite photothermal evaporator exhibits superior thermostability, pH stability, and mechanical durability. The Ti3C2Tx MXene/GCN/AC@LS composite evaporator having a dimension of 1.25 cm displays excellent performance, leading to a high evaporation rate of 2.6 kg m−2h−1 and a high solar-thermal conversion efficiency of 96 % under 1 sun illumination. This high efficiency is attributed to the good light absorption by the Ti3C2Tx MXene/GCN/AC@LS composite coupled with a better wetting through the internal microchannels of the LS, which envisages a faster water delivery and evaporation of water. The Ti3C2Tx MXene/GCN/AC@LS composite captures the residual heat from the sidewall surface as an additional source of energy.