Cell Reports (Apr 2018)

Cardiac mTORC1 Dysregulation Impacts Stress Adaptation and Survival in Huntington’s Disease

  • Daniel D. Child,
  • John H. Lee,
  • Christine J. Pascua,
  • Yong Hong Chen,
  • Alejandro Mas Monteys,
  • Beverly L. Davidson

Journal volume & issue
Vol. 23, no. 4
pp. 1020 – 1033

Abstract

Read online

Summary: Huntington’s disease (HD) is a dominantly inherited neurological disorder caused by CAG-repeat expansion in exon 1 of Huntingtin (HTT). But in addition to the neurological disease, mutant HTT (mHTT), which is ubiquitously expressed, impairs other organ systems. Indeed, epidemiological and animal model studies suggest higher incidence of and mortality from heart disease in HD. Here, we show that the protein complex mTORC1 is dysregulated in two HD mouse models through a mechanism that requires intrinsic mHTT expression. Moreover, restoring cardiac mTORC1 activity with constitutively active Rheb prevents mortality and relieves the mHTT-induced block to hypertrophic adaptation to cardiac stress. Finally, we show that chronic mTORC1 dysregulation is due in part to mislocalization of endogenous Rheb. These data provide insight into the increased cardiac-related mortality of HD patients, with cardiac mHTT expression inhibiting mTORC1 activity, limiting heart growth, and decreasing the heart’s ability to compensate to chronic stress. : Child et al. demonstrate that mTORC1 dysregulation is a key molecular mechanism in the Huntington’s disease (HD) heart phenotype. Impaired cardiac mTORC1 activity in HD mouse models requires intrinsic mHTT expression and explains the limited adaptation to cardiac stress. Keywords: Huntington’s disease, heart, mTOR, Rheb