Applied Sciences (Sep 2018)

Sensitivity Analysis for Ship-to-Shore Container Crane Design

  • Quang Huy Tran,
  • Jungwon Huh,
  • Van Bac Nguyen,
  • Choonghyun Kang,
  • Jin-Hee Ahn,
  • Inn-Joon Park

DOI
https://doi.org/10.3390/app8091667
Journal volume & issue
Vol. 8, no. 9
p. 1667

Abstract

Read online

Ship-to-shore (STS) container cranes are important pieces of equipment in container terminals for container handling, so they need to be properly designed to avoid damage or collapse due to natural hazards (i.e., storms or earthquakes). However, the dynamic analyses necessary for this can be cost- and time-consuming because of the need to consider the time history of ground motions and several sources of uncertainty. Thus, sensitivity analysis on the input parameters to the responses of the structures is needed to categorize which sources of uncertainty are significant enough to be considered as random variables. In this study, an investigation is carried out into the sensitivity of some sources of uncertainty to the seismic response of a Korean container crane structure. The input random variables studied include ground motion intensity, ground motion profiles, mass, damping, and elastic modulus of steel. Nonlinear dynamic analyses are conducted using a set of 20 natural ground motions scaled to three ground motion intensity levels, in compliance with the Korean Design Standard. The method of deterministic sensitivity analysis using the so-called tornado diagram is applied for the evaluation of structural systems. For the studied type of Korean container crane, it can be stated that the intensity of ground motions (i.e., spectral acceleration) is the most significant input parameter on the response of the structure, as measured in terms of portal drift, vertical reaction of the crane’s legs, and total base shear. The next most significant influencing factors are the mass of the structure and the characteristics of every ground motion. Damping plays a relatively important role on the total base shear, while it shows almost no impact on the axial reaction of the crane’s legs. Of the three engineering design parameters (portal drift, vertical reaction, and total base shear), the elastic modulus exhibits a low effect, but it should be considered a source of uncertainty in seismic analysis.

Keywords