In-Situ Modification of Nanofiltration Membranes Using Carbon Nanotubes for Water Treatment
Catalina Vargas-Figueroa,
Luis Pino-Soto,
Angelo Beratto-Ramos,
Yesid Tapiero,
Bernabé Luis Rivas,
María Elizabeth Berrio,
Manuel Francisco Melendrez,
Rodrigo M. Bórquez
Affiliations
Catalina Vargas-Figueroa
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 219, Concepción 4070409, Chile
Luis Pino-Soto
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 219, Concepción 4070409, Chile
Angelo Beratto-Ramos
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 219, Concepción 4070409, Chile
Yesid Tapiero
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
Bernabé Luis Rivas
Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
María Elizabeth Berrio
Advanced Nanocomposites Research Group (GINA), Departamento de Ingeniería en Materiales (DIMAT), Universidad de Concepción, Edmundo Larenas 315, Concepción 4070415, Chile
Manuel Francisco Melendrez
Advanced Nanocomposites Research Group (GINA), Departamento de Ingeniería en Materiales (DIMAT), Universidad de Concepción, Edmundo Larenas 315, Concepción 4070415, Chile
Rodrigo M. Bórquez
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Edmundo Larenas 219, Concepción 4070409, Chile
Modification of thin-film composite (TFC) nanofiltration (NF) membranes to increase permeability and improve separation performance remains a significant challenge for water scarcity. This study aimed to enhance the permeability and selectivity of two commercial polyamide (PA) NF membranes, NF90 and NF270, by modifying them with carbon nanotubes (CNTs) using microwave (MW)-assisted in-situ growth. The conducting polymer, polypyrrole (Ppy), and a ferrocene catalyst were used to facilitate the growth process. Chemical and morphological analyses confirmed that the surface of both membranes was modified. The NF270-Ppy-CNT membrane was selected for ion rejection testing due to its superior permeability compared to the NF90-Ppy-CNT. The modified NF270 membrane showed a 14% increase in ion rejection while maintaining constant water permeability. The results demonstrated that it is feasible to attach CNTs to a polymeric surface without compromising its functional properties. The Spliegler–Kedem model was employed to model the rejection and permeate flux of NF270-Ppy-CNT and NF270 membranes, which indicated that diffusive transport contributes to the modification to increase NaCl rejection. The present study provides a promising approach for modifying membranes by in-situ CNT growth to improve their performance in water treatment applications, such as desalination.