Cellular Physiology and Biochemistry (Nov 2018)

Ciliary Neurotrophic Factor (CNTF) Protects Myocardial Cells from Oxygen Glucose Deprivation (OGD)/Re-Oxygenation via Activation of Akt-Nrf2 Signaling

  • Koulong Zheng,
  • Qing Zhang,
  • Zhenqiang Sheng,
  • Yefei Li,
  • Hui-he Lu

DOI
https://doi.org/10.1159/000495711
Journal volume & issue
Vol. 51, no. 4
pp. 1852 – 1862

Abstract

Read online

Background/Aims: Oxygen glucose deprivation (OGD)/re-oxygenation (OGDR) exposure to myocardial cells mimics ischemia-reperfusion injuries. We studied the potential activity of ciliary neurotrophic factor (CNTF) on OGDR-treated myocardial cells. Methods: CNTF and CNTFR expression were tested by RT-PCR assay and Western blotting assay. Cell viability and death were tested by MTT assay and LDH release assay, respectively. Akt-Nrf2 signalings were tested by Western blotting assay and qPCR assay. Results: CNTF and its receptor CNTFR were functionally expressed in established H9c2 myocardial cells and primary murine myocardiocytes. Pretreatment of CNTF significantly attenuated OGDR-induced viability reduction and death in myocardial cells. Further studies show that in the myocardial cells CNTF activated NF-E2-related factor 2 (Nrf2) signaling to inhibit OGDR-induced reactive oxygen species (ROS) production and programmed necrosis, preventing adenine nucleotide translocator 1 (ANT-1)-p53-cyclophilin D (Cyp-D) mitochondrial association and mitochondrial depolarization. Nrf2 silencing or knockout almost abolished CNTF-induced H9c2 cytoprotection against OGDR. CNTF activated Akt in H9c2 cells and primary murine myocardiocytes. Conversely, Akt blockage by the pharmacological inhibitors not only blocked CNTF-induced Nrf2 Ser-40 phosphorylation and activation, but also nullified anti-OGDR actions by CNTF in myocardial cells. Conclusion: CNTF activates Akt-Nrf2 signaling to protect myocardial cells from OGDR.

Keywords