BMC Genomics (Jun 2021)
Mendelian randomization studies of brain MRI yield insights into the pathogenesis of neuropsychiatric disorders
Abstract
Abstract Background Observational studies have identified various associations between neuroimaging alterations and neuropsychiatric disorders. However, whether such associations could truly reflect causal relations remains still unknown. Results Here, we leveraged genome-wide association studies (GWAS) summary statistics for (1) 11 psychiatric disorders (sample sizes varied from n = 9,725 to 1,331,010); (2) 110 diffusion tensor imaging (DTI) measurement (sample size n = 17,706); (3) 101 region-of-interest (ROI) volumes, and investigate the causal relationship between brain structures and neuropsychiatric disorders by two-sample Mendelian randomization. Among all DTI-Disorder combinations, we observed a significant causal association between the superior longitudinal fasciculus (SLF) and the risk of Anorexia nervosa (AN) (Odds Ratio [OR] = 0.62, 95 % confidence interval: 0.50 ~ 0.76, P = 6.4 × 10− 6). Similar significant associations were also observed between the body of the corpus callosum (fractional anisotropy) and Alzheimer’s disease (OR = 1.07, 95 % CI: 1.03 ~ 1.11, P = 4.1 × 10− 5). By combining all observations, we found that the overall p-value for DTI − Disorder associations was significantly elevated compared to the null distribution (Kolmogorov-Smirnov P = 0.009, inflation factor λ = 1.37), especially for DTI − Bipolar disorder (BP) (λ = 2.64) and DTI − AN (λ = 1.82). In contrast, for ROI-Disorder combinations, we only found a significant association between the brain region of pars triangularis and Schizophrenia (OR = 0.48, 95 % CI: 0.34 ~ 0.69, P = 5.9 × 10− 5) and no overall p-value elevation for ROI-Disorder analysis compared to the null expectation. Conclusions As a whole, we show that SLF degeneration may be a risk factor for AN, while DTI variations could be causally related to some neuropsychiatric disorders, such as BP and AN. Also, the white matter structure might have a larger impact on neuropsychiatric disorders than subregion volumes.
Keywords