Open Chemistry (Mar 2024)
Cannabis sativa L. essential oil: Chemical composition, anti-oxidant, anti-microbial properties, and acute toxicity: In vitro, in vivo, and in silico study
Abstract
This study evaluated the volatile components of Cannabis sativa L. essential oils (CSEOs) and their pharmacological potential in vitro, in animal, and in silico. The anti-oxidant capacities of volatile compounds were tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), total anti-oxidant capacity (TAC), and gas chromatography-mass spectrometry (GC-MS). Anti-microbial activity against bacterial and fungal strains was assessed using disk diffusion and micro-dilution, and acute toxicity was examined on mice using OECD 423 criteria. The results indicate that the main components were β-caryophyllene (31.54%), α-humulene (12.62%), β-myrcene (4.83%), and α-pinene (4.69%). The essential oil showed high anti-oxidant ability (IC50 = 0.981 ± 0.059 mg/ml for DPPH, EC50 = 1.74 ± 0.05 for FRAP), and TAC of 0.101 ± 0.001 mg AAE/g. Additionally, it showed significant antibacterial action against Gram-negative organisms, such as Escherichia coli (11.33 ± 0.00 mm), Klebsiella pneumonia (9 ± 0.00 mm), and Pseudomonas aeruginosa (9.34 ± 0.00), with MICs ranging from 0.0052 to 0.0208 mg/CSEO demonstrated antifungal activity against Candida albicans and Fusarium proliferatum, with activity levels of 18.66 ± 0.88 mm, 41.89 ± 3.60%, and MICs of 0.39 and 0.013 mg/ml, respectively. In toxicological studies, CSEO proved to be safe for animals. Docking identified bioactive components and explored anti-oxidant and antibacterial properties. Docking proved that bulnesol and champacol caused indicated actions.
Keywords