Journal of Ginseng Research (Apr 2016)
Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens
Abstract
Background: Rhizospheric fungi play an essential role in the plant–soil ecosystem, affecting plant growth and health. In this study, we evaluated the fungal diversity in the rhizosphere soil of 2-yr-old healthy Panax notoginseng cultivated in Wenshan, China. Methods: Culture-independent Illumina MiSeq and culture-dependent techniques, combining molecular and morphological characteristics, were used to analyze the rhizospheric fungal diversity. A diffusion test was used to challenge the phytopathogens of P. notoginseng. Results: A total of 16,130 paired-end reads of the nuclear ribosomal internal transcribed spacer 2 were generated and clustered into 860 operational taxonomic units at 97% sequence similarity. All the operational taxonomic units were assigned to five phyla and 79 genera. Zygomycota (46.2%) and Ascomycota (37.8%) were the dominant taxa; Mortierella and unclassified Mortierellales accounted for a large proportion (44.9%) at genus level. The relative abundance of Fusarium and Phoma sequences was high, accounting for 12.9% and 5.5%, respectively. In total, 113 fungal isolates were isolated from rhizosphere soil. They were assigned to five classes, eight orders (except for an Incertae sedis), 26 genera, and 43 species based on morphological characteristics and phylogenetic analysis of the internal transcribed spacer. Fusarium was the most isolated genus with six species (24 isolates, 21.2%). The abundance of Phoma was also relatively high (8.0%). Thirteen isolates displayed antimicrobial activity against at least one test fungus. Conclusion: Our results suggest that diverse fungi including potential pathogenic ones exist in the rhizosphere soil of 2-yr-old P. notoginseng and that antagonistic isolates may be useful for biological control of pathogens.
Keywords