Entropy (Jul 2018)

Diffusion on Middle-ξ Cantor Sets

  • Alireza Khalili Golmankhaneh,
  • Arran Fernandez,
  • Ali Khalili Golmankhaneh,
  • Dumitru Baleanu

DOI
https://doi.org/10.3390/e20070504
Journal volume & issue
Vol. 20, no. 7
p. 504

Abstract

Read online

In this paper, we study Cζ-calculus on generalized Cantor sets, which have self-similar properties and fractional dimensions that exceed their topological dimensions. Functions with fractal support are not differentiable or integrable in terms of standard calculus, so we must involve local fractional derivatives. We have generalized the Cζ-calculus on the generalized Cantor sets known as middle-ξ Cantor sets. We have suggested a calculus on the middle-ξ Cantor sets for different values of ξ with 0<ξ<1. Differential equations on the middle-ξ Cantor sets have been solved, and we have presented the results using illustrative examples. The conditions for super-, normal, and sub-diffusion on fractal sets are given.

Keywords