BMC Medical Research Methodology (Aug 2022)

Estimating causal effects in the presence of competing events using regression standardisation with the Stata command standsurv

  • Elisavet Syriopoulou,
  • Sarwar I. Mozumder,
  • Mark J. Rutherford,
  • Paul C. Lambert

DOI
https://doi.org/10.1186/s12874-022-01666-x
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background When interested in a time-to-event outcome, competing events that prevent the occurrence of the event of interest may be present. In the presence of competing events, various estimands have been suggested for defining the causal effect of treatment on the event of interest. Depending on the estimand, the competing events are either accommodated or eliminated, resulting in causal effects with different interpretations. The former approach captures the total effect of treatment on the event of interest while the latter approach captures the direct effect of treatment on the event of interest that is not mediated by the competing event. Separable effects have also been defined for settings where the treatment can be partitioned into two components that affect the event of interest and the competing event through different causal pathways. Methods We outline various causal effects that may be of interest in the presence of competing events, including total, direct and separable effects, and describe how to obtain estimates using regression standardisation with the Stata command standsurv. Regression standardisation is applied by obtaining the average of individual estimates across all individuals in a study population after fitting a survival model. Results With standsurv several contrasts of interest can be calculated including differences, ratios and other user-defined functions. Confidence intervals can also be obtained using the delta method. Throughout we use an example analysing a publicly available dataset on prostate cancer to allow the reader to replicate the analysis and further explore the different effects of interest. Conclusions Several causal effects can be defined in the presence of competing events and, under assumptions, estimates of those can be obtained using regression standardisation with the Stata command standsurv. The choice of which causal effect to define should be given careful consideration based on the research question and the audience to which the findings will be communicated.

Keywords