Scientific Reports (Mar 2024)
Effect of silicon nanoparticle-based biochar on wheat growth, antioxidants and nutrients concentration under salinity stress
Abstract
Abstract Globally, salinity is an important abiotic stress in agriculture. It induced oxidative stress and nutritional imbalance in plants, resulting in poor crop productivity. Applying silicon (Si) can improve the uptake of macronutrients. On the other hand, using biochar as a soil amendment can also decrease salinity stress due to its high porosity, cation exchange capacity, and water-holding capacity. That’s why the current experiment was conducted with novelty to explore the impact of silicon nanoparticle-based biochar (Si-BC) on wheat cultivated on salt-affected soil. There were 3 levels of Si-BC, i.e., control (0), 1% Si-BC1, and 2.5% Si-BC2 applied in 3 replicates under 0 and 200 mM NaCl following a completely randomized design. Results showed that treatment 2.5% Si-BC2 performed significantly better for the enhancement in shoot and root length, shoot and root fresh weight, shoot and root dry weight, number of leaves, number of tillers, number of spikelets, spike length, spike fresh and dry weight compared to control under no stress and salinity stress (200 mM NaCl). A significant enhancement in chlorophyll a (~ 18%), chlorophyll b (~ 22%), total chlorophyll (~ 20%), carotenoid (~ 60%), relative water contents (~ 58%) also signified the effectiveness of treatment 2.5% Si-BC2 than control under 200 mM NaCl. In conclusion, treatment 2.5% Si-BC2 can potentially mitigate the salinity stress in wheat by regulating antioxidants and improving N, K concentration, and gas exchange attributes while decreasing Na and Cl concentration and electrolyte leakage. More investigations at the field level are recommended for the declaration of treatment 2.5% Si-BC2 as the best amendment for alleviating salinity stress in different crops under variable climatic conditions.
Keywords